
SERVICE & OPERATING MANUAL Original Instructions

BRUIN PUMPS

Model G1F Metallic Design Level 1

Natural Gas-Operated Diaphragm Pumps

Natural Gas Distribution Valve Assembly Drawing and Parts List	14
Natural Gas Distribution Valve Servicing	1
Pilot Valve Servicing, Assembly Drawing & Parts List	10
Diaphragm Service Drawing, with Overlay	17
Diaphragm Service Drawing, Non-Overlay	1
Diaphragm Servicing	18
Overlay Diaphragm Servicing	18
Actuator Plunger Servicing	19
Check Valve Servicing	20
Check Valve Drawing	20
Provision for Piping Gas Exhaust	2
Pumping Hazardous Liquids	2
Piping Exhaust Natural Gas	2
Exhaust Illustration	2
Grounding The Pump	2
CE Declaration of Conformity Machinery	2
CE Declaratoin of Conformity ATEX	2

Safety Information

A IMPORTANT

Read the safety warnings and instructions in this manual before pump installation and start-up. Failure to comply with the recommendations stated in this manual could damage the pump and void factory warranty.

When the pump is used for materials that tend to settle out or solidify, the pump should be flushed after each use to prevent damage. In freezing temperatures the pump should be completely drained between uses.

A CAUTION

Before pump operation, inspect all fasteners for loosening caused by gasket creep. Retighten loose fasteners to prevent leakage. Follow recommended torques stated in this manual.

Nonmetallic pumps and plastic components are not UV stabilized. Ultraviolet radiation can damage these parts and negatively affect material properties. Do not expose to UV light for extended periods of time.

WARNING

Pump not designed, tested or certified to be powered by compressed natural gas. Powering the pump with natural gas will void the warranty.

A WARNING

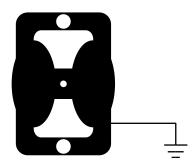
When used for toxic or aggressive fluids, the pump should always be flushed clean prior to disassembly.

Before maintenance or repair, shut off the compressed air line, bleed the pressure, and disconnect the air line from the pump. Be certain that approved eye protection and protective clothing are worn at all times. Failure to follow these recommendations may result in serious injury or death.

Airborne particles and loud noise hazards. Wear eye and ear protection.

In the event of diaphragm rupture, pumped material may enter the air end of the pump, and be discharged into the atmosphere. If pumping a product that is hazardous or toxic, the air exhaust must be piped to an appropriate area for safe containment.

Take action to prevent static sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves, containers and other miscellaneous equipment must be properly grounded.



This pump is pressurized internally with air pressure during operation. Make certain that all fasteners are in good condition and are reinstalled properly during reassembly.

Use safe practices when lifting

Grounding ATEX Pumps

ATEX compliant pumps are suitable for use in explosive atmospheres when the equipment is properly grounded in accordance with local electrical codes. Pumps equipped with electrically conductive diaphragms are suitable for the transfer of conductive or non-conductive fluids of any explosion group. When operating pumps equipped with non-conductive diaphragms that exceed the maximum permissible projected area, as defined in EN 13461-1: 2009 section 6.7.5 table 9, the following protection methods must be applied:

- Equipment is always used to transfer electrically conductive fluids or
- Explosive environment is prevented from entering the internal portions of the pump, i.e. dry running

For further guidance on ATEX applications, please consult the factory.

Quality System ISO9001 Certified

Environmental Management System ISO14001 Certified

BRUIN PUMPS

G1F Metallic

Natural Gas-Operated Diaphragm Pumps

ENGINEERING, PERFORMANCE & CONSTRUCTION DATA

INTAKE/DISCHARGE PIPE SIZE 1" NPT (internal) 1" BSP Tapered (internal)	CAPACITY 0 to 45 gallons per minute (0 to 170 liters per minute)	GAS VALVE No-lube, no-stall design	SOLIDS-HANDLING Up to .25 in. (6mm)	HEADS UP TO 100 psi or 230.7 ft. of water (7Kg/cm² or 70 meters)	DISPLACEMENT/STROKE .11 Gallon / .42 liter
A CAUTION! Operation	ng temperature limitation	s are as follows:		Operatinç Maximum	Temperatures Minimum
	sistant. Shows good solvent, oil, w , ozone, chlorinated hydrocarbons		-10°F -23°C		
PTFE Chemically inert, virtuall liquid or gaseous fluorine and a elevated temperatures.	y impervious. Very few chemicals a few fluoro-chemicals such as chl	ulent 220°F e at 104°C	-35°F -37°C		
FKM (Fluorocarbon) shows ghydrocarbons, acids, animal ar	good resistance to a wide range of nd vegetable oils. Hot water or hot	350°F 177°C	-40°F -40°C		

For specific applications, always consult "Chemical Resistance Chart" Technical Bulletin

Maximum and Minimum Temperatures are the limits for which these materials can be operated. Temperatures coupled with pressure affect the longevity of diaphragm pump components. Maximum life should not be expected at the extreme limits of the temperature ranges.

These G1F BRUIN® models are designed to be powered only by natural gas. The minimum pump operating temperature is -10°F and the maximum operating temperature is 180°F.

Explanation of Pump Nomenclature

G1F Metallic · Design Level 1 · Ball Valve

MODEL	Pump Brand	Pump Size	Check Valve Type	Design Level	Wetted Material	Diaphragm/ Check Valve Materials	Check Valve Seat	Non-Wetted Material Options	Porting Options	Pump Style	Pump Options	Kit Options	Shipping Weight Ibs. (kg)
G1FB1ABTXNSX00~	G	1F	В	1	Α	В	Т	Х	N	S	Х	00.	28 (13)
G1FB1ATTXNSX00~	G	1F	В	1	Α	Т	Т	Х	N	S	Х	00.	28 (13)
G1FB1SBTXNSX00~	G	1F	В	1	S	В	Т	Х	N	S	Х	00.	43 (20)
G1FB1STTXNSX00~	G	1F	В	1	S	Т	Т	Х	N	S	Х	00.	43 (20)
G1FB1ABTXBSX00~	G	1F	В	1	Α	В	Т	Х	В	S	Х	00.	28 (13)
G1FB1ATTXBSX00~	G	1F	В	1	Α	Т	Т	Х	В	S	Х	00.	28 (13)
G1FB1SBTXBSX00~	G	1F	В	1	S	В	Т	Х	В	S	Х	00.	43 (20)
G1FB1STTXBSX00~	G	1F	В	1	S	Т	Т	X	В	S	Х	00.	43 (20)
G1FB1ABT0NSX00~	G	1F	В	1	Α	В	Т	0	N	S	Х	00.	28 (13)
G1FB1SBT0NSX00~	G	1F	В	1	S	В	Т	0	N	S	Х	00.	43 (20)
G1FB1ABT0BSX00~	G	1F	В	1	Α	В	Т	0	В	S	Х	00.	28 (13
G1FB1SBT0BSX00~	G	1F	В	1	S	В	Т	0	В	S	Х	00.	43 (20)

Note: Models listed in the table are for reference only. See nomenclature below for other models.

Pump Brand G= Sweet Gas Operated

Pump Size

Check Valve Type B=Ball

Design Level 1= Design Level

Wetted Material S= Stainless Steel A= Aluminum **Diaphragm Check Ball Materials**

B= Nitrile/Nitrile
T=PTFE -Nitrile/PTFE
5= Nitrile/PTFE

Check Valve Seat T= Virgin PTFE A= Aluminum S= Stainless Steel **Non-Wetted Material Options**

A= Painted Aluminum X= Unpainted Aluminum

0= Unpainted Aluminum/FKM Elastomer V= Painted Aluminum/ FKM Elastomers

Porting Options

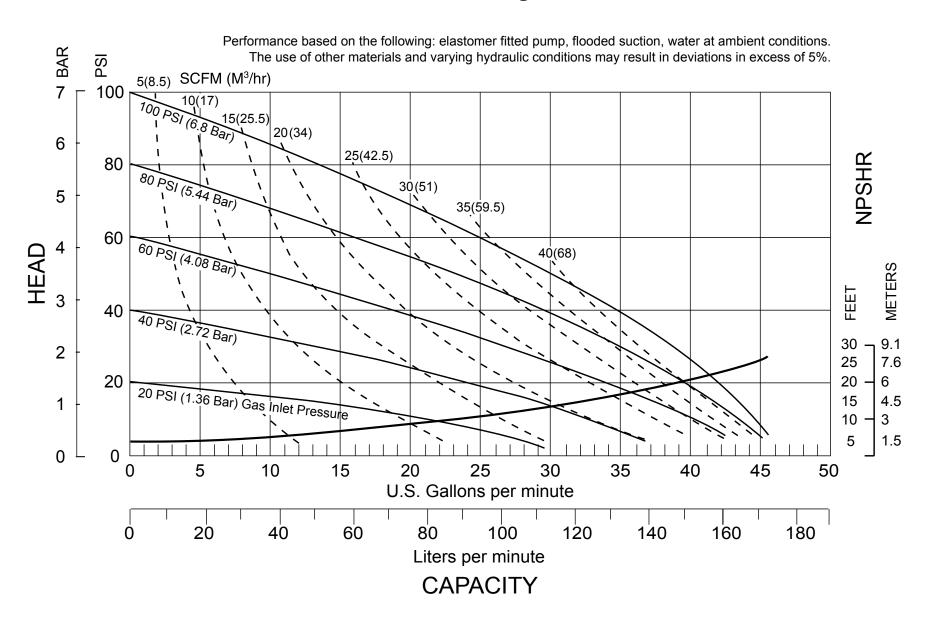
N=NPT Threads B=BSP (Tapered) Threads

Pump Style S= Standard

Pump Options
X=No Muffler Permitted *

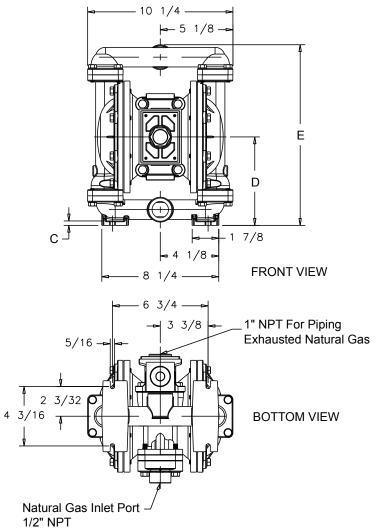
 $\langle x3\rangle$

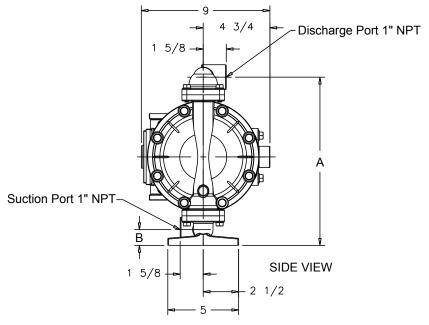
II 2G c T5 II 2D c T100°C †


Models equipped with Wetted Options A or S, Non-Wetted Options A, X, 0, or V, Pump Option X.

NOTE: See page 25 for ATEX Explanation of Type Examination Certificate

These pump models are designed to pump the following fluids: Crude Oil, Salt Water, Drilling Mud, Condensate, Lubrication Oils, Glycol, Caustic liquids, and Acids.

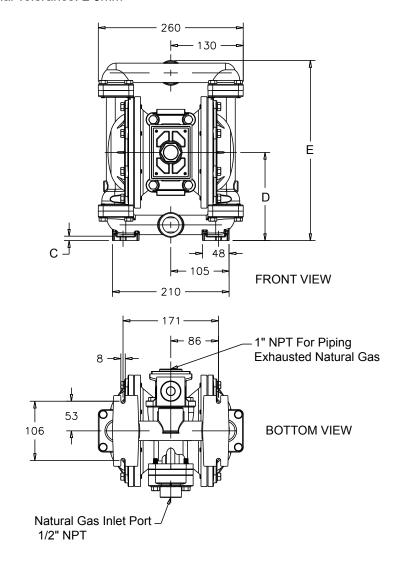

^{*} The exhausted natural gas must be vented to a low pressure safe location in accordance with local fire safety and environmental codes, an industry or nationally recognized code having jurisdiction over the specific installations, and/ or CAN/CGA B149. Installation Codes.

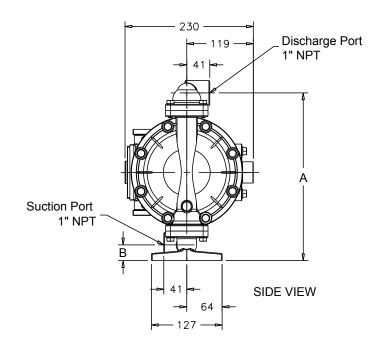

Performance Curve, G1F Model Metallic Design Level 1

Dimensions: G1F Model Metallic

Dimensions in Inches
Dimensional Tolerance: ±1/8"

Both Suction and Discharge Ports are Available with 1" BSP Tapered Threads


.


Dimension	Α	В	С	D	E
Aluminum	11 27/32	1 3/32	5/16	6 7/32	12 23/32
Stainless Steel	11 1/32	1 7/32	7/16	6 11/32	12 27/32

Note: The pump is to be mounted in the horizontal position.

Metric Dimensions: G1F Model Metallic

Dimensions in Millimeters
Dimensional Tolerance: ± 3mm

Both Suction and Discharge Ports are Available with 1" BSP Tapered Threads

Dimension	Α	В	С	D	Е
Aluminum	301mm	28mm	8mm	158mm	323mm
Stainless Steel	304mm	31mm	11mm	161mm	326mm

Note: The pump is to be mounted in the horizontal position.

PRINCIPLE OF PUMP OPERATION

This ball type check valve pump is powered by sweet natural gas and is a 1:1 ratio design. The inner side of one diaphragm chamber is alternately pressurized while simultaneously exhausting the other inner chamber. This causes the diaphragms, which are connected by a common rod secured by plates to the centers of the diaphragms, to move in a reciprocating action. (As one diaphragm performs the discharge stroke the other diaphragm is pulled to perform the suction stroke in the opposite chamber.) Gas pressure is applied over the entire inner surface of the diaphragm while liquid is discharged from the opposite side of the diaphragm. The diaphragm operates in a balanced condition during the discharge stroke which allows the pump to be operated at discharge heads over 200 feet (61 meters) of water.

For maximum diaphragm life, keep the pump as close to the liquid being pumped as possible. Positive suction head in excess of 10 feet of liquid (3.048 meters) may require a back pressure regulating device to maximize diaphragm life.

Alternate pressurizing and exhausting of the diaphragm chamber is performed by an externally mounted, pilot operated, four way spool type gas distribution valve. When the spool shifts to one end of the valve body, inlet pressure is applied to one diaphragm

chamber and the other diaphragm chamber exhausts. When the spool shifts to the opposite end of the valve body, the pressure to the chambers is reversed. The gas distribution valve spool is moved by a internal pilot valve which alternately pressurizes one end of the valve while exhausting the other end. The pilot valve is shifted at each end of the diaphragm stroke when a actuator plunger is contacted by the diaphragm plate. This actuator plunger then pushes the end of the pilot valve spool into position to activate the gas distribution valve.

The chambers are connected with manifolds with a suction and discharge check valve for each chamber, maintaining flow in one direction through the pump.

INSTALLATION AND START-UP

Locate the pump as close to the product being pumped as possible. Keep the suction line length and number of fittings to a minimum. Do not reduce the suction line diameter.

For installations of rigid piping, short sections of flexible conductive hose should be installed between the pump and the piping. The flexible conductive hose reduces vibration and strain to the pumping system. A surge suppressor is recommended to further reduce pulsation in flow.

NATURAL GAS SUPPLY

Natural gas inlet pressure must be regulated to 100 (7 bar) psi with a pressure regulator. Connect the pump gas inlet to an gas supply of sufficient capacity and pressure required for desired performance. When the gas supply line is solid piping, use a short length of flexible conductive hose not less than 3/4" (19mm) in diameter between the pump and the piping to reduce strain to the piping. The weight of the gas supply line, regulators and filters must be supported by some means other than the gas inlet cap. Failure to provide support for the piping may result in damage to the pump. A pressure regulating valve should be installed to insure gas supply pressure does not exceed recommended limits.

VALVE LUBRICATION

The natural gas distribution valve and the pilot valve are designed to operate WITHOUT lubrication. This is the preferred mode of operation. There may be instances of personal preference or poor quality gas supplies when lubrication of the supply is required. The pump system will operate with properly lubricated supply. Proper lubrication requires the use of an gas line lubricator (available from BRUIN) set to deliver one drop of SAE 10 nondetergent oil for every 20 SCFM (9.4 liters/sec.) of gas the pump consumes at the point of operation. Consult the pump's published Performance Curve to determine this.

GAS INLET AND PRIMING

To start the pump, open the gas valve approximately 1/2" to 3/4" turn. After the pump primes, the valve can be opened to increase gas flow as desired. If opening the valve increases cycling rate, but does not increase the rate of flow, cavitation has occurred. The valve should be closed slightly to obtain the most efficient gas flow to pump flow ratio.

BETWEEN USES

When the pump is used for materials that tend to settle out or solidify when not in motion, the pump should be flushed after each use to prevent damage. (Product remaining in the pump between uses could dry out or settle out. This could cause problems with the diaphragms and check valves at restart.) In freezing temperatures the pump must be completely drained between uses in all cases.

⚠ WARNING

Natural gas exhaust is to be vented to low pressure safe location using conductive Nitrile rubber hose or metal piping in accordance with

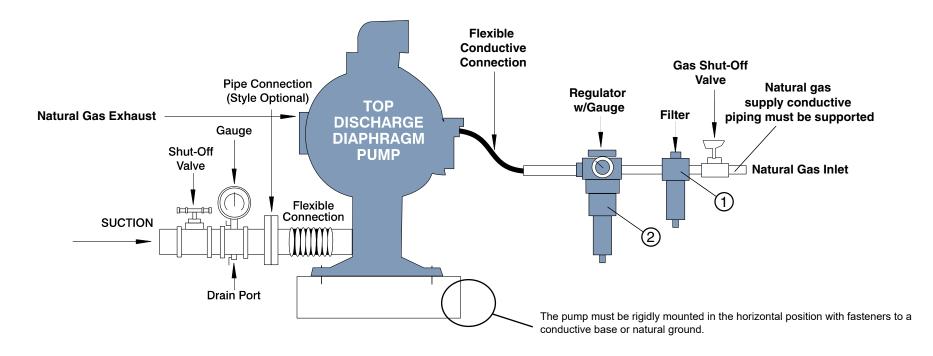
local fire and environmental codes, or an industry or nationally recognized code having juristiction over specific installations, and/or CAN/CGA B149, Installation Codes.

INSTALLATION GUIDETop Discharge Ball Valve Pump

1 020.063.000. Filter

VENTING WARNING: This filter is equipped with a stainless steel manual drain. The port is 1/8" NPT. When draining moisture from the filter, first shut off the natural gas supply.

020.058.000. REGULATOR WITH GAGE


PRESSURE WARNING: This regulator is to be installed at point of use with the pump. The maximum gas supply is 400psi. Full line pressure needs to be regulated below 400psi prior to the regulator installation position.

VENTING WARNING: This regulator is equipped with a 1/4" NPT vent port. In the event of a diaphragm rupture, natural gas can be exhausted into the surrounding environment. Connect a conductive hose or pipe to the vent port to send the escaping natural gas to a safe area for gas reclamation. Make sure to ground the regulator, hose, and/or pipe.

▲ CAUTION The natural gas exhaust must be piped to an area for safe

be piped to an area for safe disposition of the product being pumped, in the event of a diaphragm failure.

TROUBLESHOOTING Possible Symptoms:

- Pump will not cycle.
- Pump cycles, but produces no flow.
- Pump cycles, but flow rate is unsatisfactory.
- Pump cycle seems unbalanced.
- Pump cycle seems to produce excessive vibration.

What to Check: Excessive suction lift in system.

Corrective Action: For lifts exceeding 20 feet (6 meters), filling the pumping chambers with liquid will prime the pump in most cases.

<u>What to Check:</u> Excessive flooded suction in system.

<u>Corrective Action:</u> For flooded conditions exceeding 10 feet (3 meters) of liquid, install a back pressure device.

What to Check: System head exceeds natural gas supply pressure.

<u>Corrective Action:</u> Increase the inlet gas pressure to the pump. Most diaphragm pumps are designed for 1:1 pressure ratio at zero flow.

What to Check: Natural gas supply pressure or volume exceeds system head.

Corrective Action: Decrease inlet gas pressure and volume to the pump as calculated on the published PERFORMANCE CURVE. Pump is cavitating the fluid by fast cycling.

<u>What to Check:</u> Undersized suction line.

<u>Corrective Action:</u> Meet or exceed pump connection recommendations shown on the DIMENSIONAL DRAWING.

What to Check: Restricted or undersized gas line.

<u>Corrective Action:</u> Install a larger gas line and connection. Refer to gas inlet recommendations shown in your pump's SERVICE MANUAL.

What to Check: Check the externally serviceable gas distribution system of the pump.

<u>Corrective Action:</u> Disassemble and inspect the natural gas distribution valve, pilot valve and pilot valve actuators. Refer to the parts drawing and valve section of the SERVICE MANUAL. Check for clogged discharge or closed valve before reassembly.

What to Check: Pumped fluid in gas exhaust line.

<u>Corrective Action:</u> Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly. Refer to the Diaphragm Replacement section of your pump SERVICE MANUAL.

<u>What to Check:</u> Fluid suction side air leakage or air in product.

<u>Corrective Action:</u> Visually inspect all suction side gaskets and pipe connections.

What to Check: Obstructed check valve.

Corrective Action: Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket. Refer to the Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

What to Check: Worn or misaligned check valve or check valve seat.

<u>Corrective Action:</u> Inspect check valves and seats for wear and proper seating. Replace if necessary. Refer to Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

What to Check: Blocked suction line. Corrective Action: Remove or flush obstruction. Check and clear all suction screens and strainers.

What to Check: Blocked discharge line.

<u>Corrective Action:</u> Check for obstruction or closed discharge line valves.

What to Check: Blocked pumping chamber.

<u>Corrective Action:</u> Disassemble and inspect the wetted chambers of the pump. Remove or flush any obstructions. Refer to the pump SERVICE MANUAL for disassembly instructions.

What to Check: Entrained air or vapor lock in one or both fluid pumping chambers.

Corrective Action: Purge chambers through tapped chamber vent plugs. PURGING THE CHAMBERS OF AIR CAN BE DANGEROUS! Contact the BRUIN Technical Services Group before performing this procedure. Any model with top-ported discharge will reduce or eliminate problems with entrained air.

If your pump continues to perform below your expectations, contact your local BRUIN Distributor or factory Technical Services Group for a service evaluation.

WARRANTY

Refer to the enclosed BRUIN Warranty Certificate.

RECYCLING

Many components of Natural Gas Operated BRUIN® Metallic pumps are made of recyclable materials (see chart on page 10 for material specifications). We encourage pump users to recycle worn out parts and pumps whenever possible, after any hazardous pumped fluids are thoroughly flushed.

A WARNING

Do not smoke near the pump or use the pump near an open flame. Fire or explosion could result.

A WARNING

This pump must not be used for fluid transfer into aircraft.

IMPORTANT SAFETY **INFORMATION**

IMPORTANT

Read these safety warnings and instructions in this manual completely, before installation and start-up of the pump. It is the

responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

A WARNING

Take action to prevent static sparking. Fire or explosion sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves, containers

or other miscellaneous equipment must be grounded. (See Page 22)

A WARNING

This pump is pressurized internally with natural gas pressure during operation. Always make certain that all bolting is in good condition and that all of the correct

bolting is reinstalled during assembly.

Certified to CSA Technical Letter No.

Certified to ANSI LC6-2008

A CAUTION

Before pump operation, inspect all gasketed fasteners for looseness caused by gasket creep. Retorque loose fasteners to

prevent leakage. Follow recommended torques stated in this manual.

AWARNING

When used for toxic or aggressive fluids, the pump should always be flushed clean prior to disassembly.

A WARNING

Before maintenance or repair, shut off the compressed natural gas line, bleed the pressure, and disconnect the gas line from the pump. The

discharge line may be pressurized and must be bled of its pressure.

A WARNING

In the event of diaphragm rupture, pumped material may enter the natural gas end of the pump, and be discharged into the

atmosphere. The gas exhaust must be piped to an appropriate area for safe disposition.

A WARNING

Before doing any maintenance on the pump, be certain all pressure is completely vented from the pump, suction, discharge,

piping, and all other openings and connections. Be certain the natural gas supply is locked out or made non-operational, so that it cannot be started while work is being done on the pump. Be certain that approved eye protection and protective clothing are worn all times in the vicinity of the pump. Failure to follow these recommendations may result in serious injury or death.

A WARNING

Airborne particles and loud noise hazards.

Wear ear and eye protection.

MATERIAL CODES THE LAST 3 DIGITS OF PART NUMBER

000	Assembly, sub-assembly;	306	Carbon Steel, Black PTFE Coated	374	Carboxylated Nitrile	607	Envelon
	and some purchased items	307	Aluminum, Black Epoxy Coated	375	Fluorinated Nitrile	608	Conductive PTFE
010	Cast Iron	308	Stainless Steel, Black PTFE Coated	378	High Density Polypropylene	610	PTFE Encapsulated Silicon
012	Powered Metal	309	Aluminum, Black PTFE Coated	379	Conductive Nitrile	611	PTFE Encapsulated FKM
015	Ductile Iron	310	PVDF Coated	405	Cellulose Fibre	632	Neoprene/Hytrel
020	Ferritic Malleable Iron	313	Aluminum, White Epoxy Coated	408	Cork and Neoprene	633	FKM/PTFE
025	Music Wire	330	Zinc Plated Steel	425	Compressed Fibre	634	EPDM/PTFE
080	Carbon Steel, AISI B-1112	331	Chrome Plated Steel	426	Blue Gard	635	Neoprene/PTFE
100	Alloy 20	332	Aluminum, Electroless Nickel Plated	440	Vegetable Fibre	637	PTFE, FKM/PTFE
110	Alloy Type 316 Stainless Steel	333	Carbon Steel, Electroless	465	Fibre	638	PTFE, Hytrel/PTFE
111	Alloy Type 316 Stainless Steel		Nickel Plated	500	Delrin 500	639	Nitrile/TFE
	(Electro Polished)	335	Galvanized Steel	501	Delrin 570	643	Santoprene®/EPDM
112	Alloy C	336	Zinc Plated Yellow Brass	502	Conductive Acetal, ESD-800	644	Santoprene®/PTFE
113	Alloy Type 316 Stainless Steel	337	Silver Plated Steel	503	Conductive Acetal, Glass-Filled	656	Santoprene Diaphragm and
	(Hand Polished)	340	Nickel Plated	505	Acrylic Resin Plastic		Check Balls/EPDM Seats
114	303 Stainless Steel	342	Filled Nylon	506	Delrin 150	661	EPDM/Santoprene
115	302/304 Stainless Steel	351	Food Grade Santoprene	520	Injection Molded PVDF	666	FDA Nitrile Diaphragm,
117	440-C Stainless Steel (Martensitic)	353	Geolast; Color: Black	020	Natural color		PTFE Overlay, Balls, and Seals
120	416 Stainless Steel	354	Injection Molded #203-40	540	Nylon	668	PTFE, FDA Santoprene/PTFE
	(Wrought Martensitic)		Santoprene- Duro 40D +/-5;	541	Nylon		,
123	410 Stainless Steel		Color: RED	542	Nylon		
	(Wrought Martensitic)	355	Thermal Plastic	544	Nylon Injection Molded		and Hytrel are registered
148	Hardcoat Anodized Aluminum	356	Hytrel	550	Polyethylene	tradeı	names of E.I. DuPont.
149	2024-T4 Aluminum	357	Injection Molded Polyurethane	551	Glass Filled Polypropylene	Gylon	is a registered tradename
150	6061-T6 Aluminum	358	Urethane Rubber	552	Unfilled Polypropylene	of Ga	rlock, Inc.
151	6063-T6 Aluminum		(Some Applications)	553	Unfilled Polypropylene	Nylati	on is a registered tradename
152	2024-T4 Aluminum (2023-T351)		(Compression Mold)	555	Polyvinyl Chloride		ymer Corp.
154	Almag 35 Aluminum	359	Urethane Rubber	556	Black Vinyl		•
155	356-T6 Aluminum	360	Nitrile Rubber Color coded: RED	558	Conductive HDPE		prene is a registered tradename kon Mobil Corp.
156	356-T6 Aluminum	361	Nitrile	570	Rulon II		•
157	Die Cast Aluminum Alloy #380	363	FKM (Fluorocarbon).	580	Ryton		II is a registered tradename
158	Aluminum Alloy SR-319		Color coded: YELLOW	590	Valox	of Dix	ion Industries Corp.
159	Anodized Aluminum	364	E.P.D.M. Rubber.	590 591	Nylatron G-S	Ryton	is a registered tradename
162	Brass, Yellow, Screw Machine Stock	001	Color coded: BLUE	592	Nylatron NSB	of Phi	llips Chemical Co.
165	Cast Bronze, 85-5-5	365	Neoprene Rubber.	600	•	Valox	is a registered tradename
166	Bronze, SAE 660	000	Color coded: GREEN	000	PTFE (virgin material) Tetrafluorocarbon (TFE)		neral Electric Co.
170	Bronze, Bearing Type,	366	Food Grade Nitrile	601			
170	Oil Impregnated	368	Food Grade EPDM	601 602	PTFE (Bronze and moly filled) Filled PTFE		
175	Die Cast Zinc	370	Butyl Rubber	603			
180	Copper Alloy	570	Color coded: BROWN		Blue Gylon PTFE		
305	Carbon Steel, Black Epoxy Coated	371	Philthane (Tuftane)	604			
303	Carbon Steel, Diack Epoxy Coaled	3/ 1	i initialie (Tultalie)	606	PTFE		

Composite Repair Parts Drawing

Available Service Kits:

476.319.000 Gas End Kit

Seals, O-Rings, Gaskets, Retaining Rings, Plungers, & Bushings

476.319.363 Gas End Kit

FKM Seals, O-Rings, Gaskets,

Retaining Rings, Plungers, & Bushings

476.204.360 ~ Wetted End Kit

Nitrile Diaphagms, Nitrle Check Balls

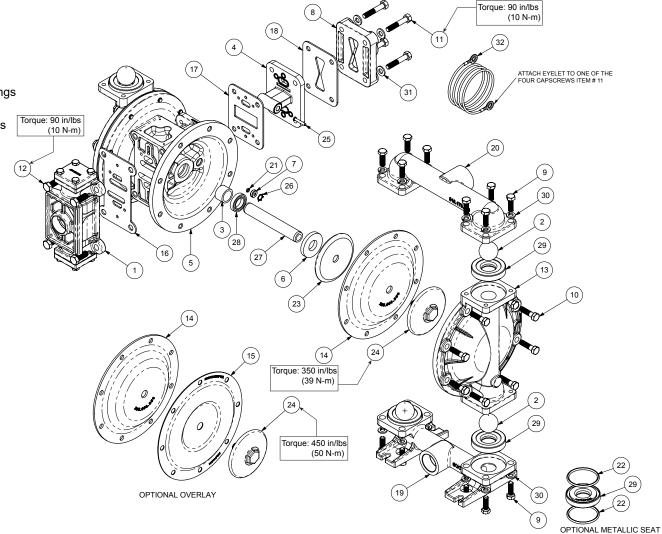
and PTFE Check Valve Seats,

U-Cup Seal

476.204.649 ~ Wetted End Kit

Nitrile Diaphragms, PTFE Overlay Diaphragms, PTFE Check Balls

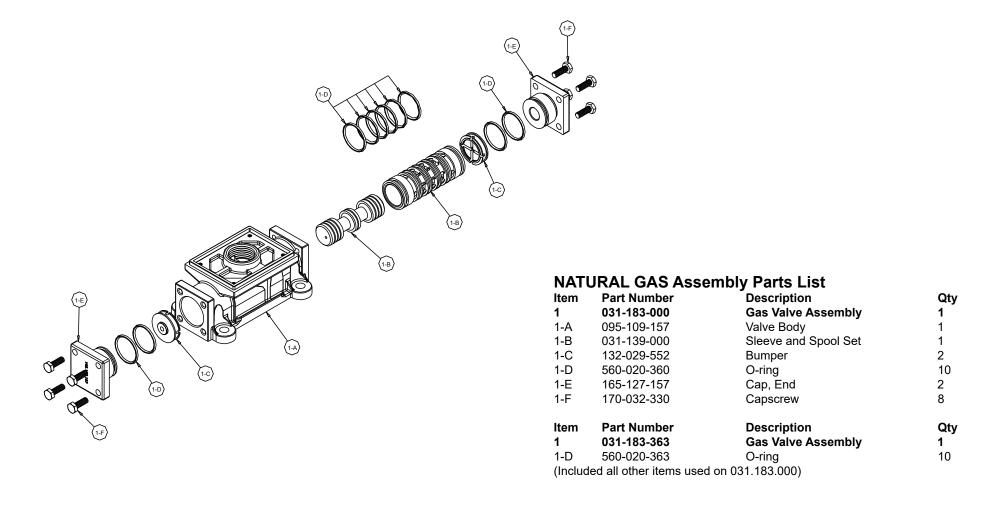
and PTFE Check Valve Seats,


U-Cup Seal

476.204.672 Wetted End Kit

Nitrile Diaphragms, PTFE

Check Balls and PTFE


Check Valve Seats

Composite Repair Parts List

ITEM	PART NUMBER	DESCRIPTION	QTY	ITEM	PART NUMBER	DESCRIPTION	QTY
1	031-183-000	Gas Valve Assembly	1	19	518-175-156	Manifold, Suction	1
	031-183-363	Gas Valve Assembly	1		518-175-156E	Manifold, Suction 1"BSP (Tapered)	1
2	050-028-360	Ball, Check	4		518-175-110	Manifold, Suction	1
	050-028-600	Ball, Check	4		518-175-110E	Manifold, Suction 1"BSP (Tapered)	1
3	070-012-170	Bushing	2	20	518-176-156	Manifold, Discharge	1
4	095-110-000	Pilot Valve Assembly	1		518-176-156E	Manifold, Discharge 1"BSP (Tapered)	1
	095-110-363	Pilot Valve Assembly	1		518-176-110	Manifold, Discharge	1
5	114-025-157	Intermediate Bracket	1		518-176-110E	Manifold, Discharge 1"BSP (Tapered)	1
6	132-019-360	Bumper, Diaphragm	2	21	560-001-363	O-ring	2
	132-019-363	Bumper, Diaphragm	2		560-001-360	O-ring	2
7	135-036-506	Bushing, Plunger	2	22	560-091-360	O-ring (metallic seats only)	8
8	165-120-000	Cap, Gas Inlet Assembly	1		560-091-611	O-ring (metallic seats only)	8
9	170-044-330	Capscrew, Hex Hd 5/16-18 X .1.00	16	23	612-022-330	Plate, Inner Diaphragm	2
10	170-045-330	Capscrew, Hex Hd 5/16-18 X 1.25	16	24	612-108-157	Plate, Outer Diaphragm Assembly	2
11	170-069-330	Capscrew, Hex Hd 5/16-18 X 1.75	4		612-101-110	Plate, Outer Diaphragm Assembly	2
12	170-006-330	Capscrew, Hex 3/8-16 X 1.00	4	25	620-022-115	Pin, Actuator	2
13	196-173-157	Chamber, Outer	2	26	675-042-115	Ring, Retaining	2
	196-173-110	Chamber, Outer	2	27	685-060-120	Rod, Diaphragm	1
14	286-008-360	Diaphragm	2	28	720-010-363	Seal, U-Cup	2
15	286-015-604	Diaphragm, Overlay	2		720-010-375	Seal, U-Cup	2
16	360-093-360	Gasket, Natural Gas Valve	1	29	722-098-600	Seat, Check Valve	4
17	360-114-360	Gasket, Pilot Valve	1		722-098-110	Seat, Check Valve	4
18	360-104-379	Gasket, Gas Inlet	1		722-098-150	Seat, Check Valve	4
		·		30	900-004-330	Washer, Lock, 5/16	16
				31	901-038-330	Flat, Washer	4
				32	920-025-000	Ground Strap	1

Natural Gas Valve Assembly Drawing, Parts List

NATURAL GAS DISTRIBUTION VALVE SERVICING

To service the natural gas valve first shut off the compressed air, bleed pressure from the pump, and disconnect the gas supply line from the pump.

Step #1: See COMPOSITE REPAIR PARTS DRAWING.

Using a 9/16" wrench or socket, remove the four hex capscrews (items 12). Remove the air valve assembly from the pump.

Remove and inspect gasket (item 16) for cracks or damage. Replace gasket if needed.

Step #2: Disassembly of the natural gas valve.

Using a 7/16" wrench or socket, remove the eight hex capscrews (items 1-F) that fasten the end caps to the valve body. Next remove the two end caps (items 1-E). Inspect the two o-rings (items 1-D) on each end cap for damage or wear. Replace the o-rings as needed.

Remove the bumpers (items 1-C). Inspect the bumpers for damage or wear. Replace the bumpers as needed.

Remove the spool (part of item 1-B) from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-B) for dirt, scratches, or other contaminants. Remove the sleeve if needed and replace with a new sleeve and spool set (item 1-A).

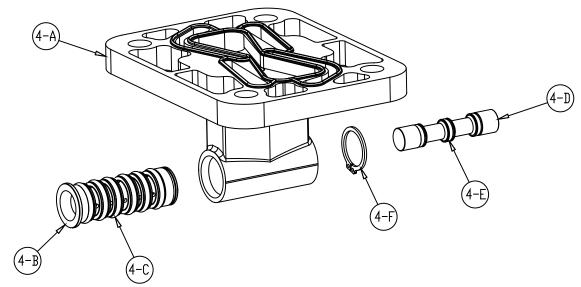
Step #3: Reassembly of the natural gas valve.

Install one bumper (item 1-C) and one end cap (item 1-E), with two o-rings (items 1-D), and fasten with four hex capscrews (items 1-F) to the valve body (item 1-A).

Remove the new sleeve an spool set (item 1-B) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1-D) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-A), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Install the remaining bumper and end cap (with o-rings), and fasten with the remaining hex capscrews.

Fasten the natural gas valve assembly (item 1) and gasket to the pump. Connect the compressed gas line to the pump. The pump is now ready for operation.

A IMPORTANT


Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Pilot Valve Servicing, Assembly Drawing & Parts List

PILOT VALVE ASSEMBLY PARTS LIST

ITEM	PART NUMBER	DESCRIPTION	QTY	
4	095-110-000	Pilot Valve Assembly	1	
4-A	095-095-157	Valve Body	1	(4-A)
4-B	755-052-000	Sleeve (With O-rings)	1	
4-C	560-033-360	O-ring (Sleeve)	6	
4-D	775-055-000	Spool (With O-rings)	1	
4-E	560-023-360	O-ring (Spool)	3	
4-F	675-037-080	Retaining Ring	1	
ITEM	PART NUMBER	DESCRIPTION	QTY	
1 1 - 141	LAILI MOMDEN	DECCIAL LIGIT	Q (11	
4	095-110-363	Pilot Valve Assembly	1	
			1	
4	095-110-363	Pilot Valve Assembly	1 1 6	
4 4-B	095-110-363 755-052-363	Pilot Valve Assembly Sleeve (With O-rings)	1	C
4 4-B 4-C 4-E	095-110-363 755-052-363 560-033-363	Pilot Valve Assembly Sleeve (With O-rings) O-ring (Sleeve) O-ring (Spool)	1 1 6	(
4 4-B 4-C 4-E	095-110-363 755-052-363 560-033-363 560-023-363	Pilot Valve Assembly Sleeve (With O-rings) O-ring (Sleeve) O-ring (Spool)	1 1 6	

PILOT VALVE SERVICING

To service the pilot valve first shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump.

STEP #1: See pump assembly drawing.

Using a 1/2" wrench or socket, remove the four capscrews (item 11). Remove the air inlet cap (item 8) and air inlet gasket (item 18). The pilot valve assembly (item 4) can now be removed for inspection and service.

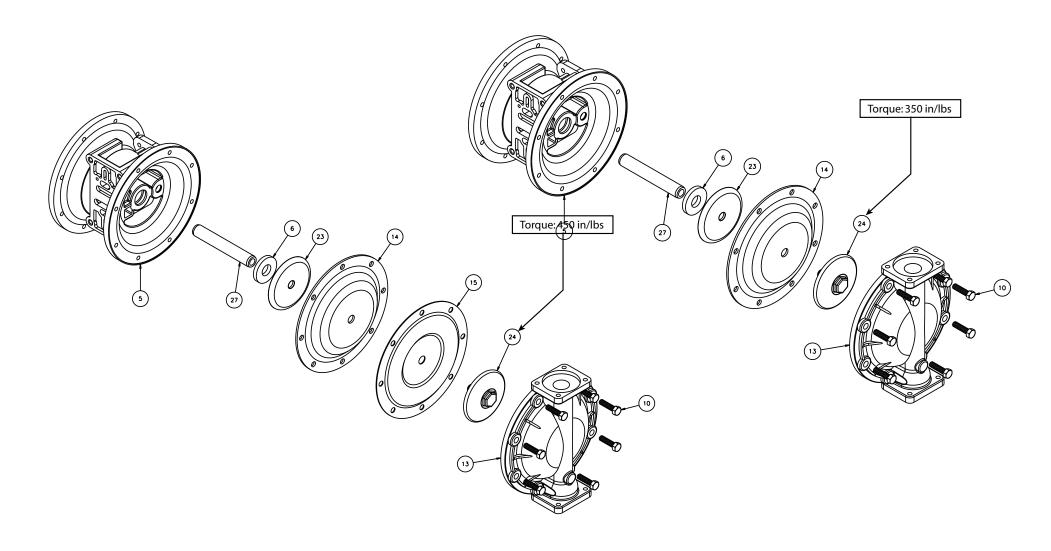
STEP #2: Disassembly of the pilot valve.

Remove the pilot valve spool (item 4-D). Wipe clean and inspect spool and o-rings for dirt, cuts or wear. Replace the o-rings and spool if necessary.

Remove the retaining ring (item 4-F) from the end of the sleeve (item 4-B) and remove the sleeve from the valve body (item 4-A). Wipe clean and inspect sleeve and o-rings for dirt, cuts or wear. Replace the o-rings and sleeve if necessary.

STEP #3: Re-assembly of the pilot valve.

Generously lubricate outside diameter of the sleeve and o-rings. Then carefully insert sleeve into valve body. Take CAUTION when inserting sleeve, not to shear any o-rings. Install retaining ring to sleeve. Generously lubricate outside diameter of spool and o-rings. Then carefully insert spool into sleeve. Take CAUTION when inserting spool, not to shear any o-rings. Use BP-LS-EP-2 multipurpose grease, or equivalent.


STEP #4: Re-install the pilot valve assembly into the intermediate.

Be careful to align the ends of the pilot valve stem between the plunger pins when inserting the pilot valve into the cavity of the intermediate.

Re-install the gasket, air inlet cap and capscrews. Connect the air supply to the pump. The pump is now ready for operation.

Diaphragm Service Drawing, with Overlay

Diaphragm Service Drawing, Non-Overlay

DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Shut off the natural gas supply, bleed the pressure from the pump and disconnect the natural gas supply line from the pump. Drain any remaining liquid from the pump.

Step #1: See the pump assembly drawing and the diaphragm servicing illustration.

Using a 1/2" wrench or socket, remove the 16 capscrews (item 9) that fasten the manifolds (items 19 & 20) to the outer chambers (item 13).

Step #2: Removing outer chambers.

Using a 1/2" wrench or socket, remove the 16 capscrews (item 10), that fasten the outer chambers (item 13), diaphragms (item 14) and intermediate (item 5) together.

Step #3: Removing the diaphragms and diaphragm plates.

Use a 7/8" wrench or six point socket to remove the outer diaphragm plate assemblies (item 24), diaphragms (item 14) and inner diaphragm plates (item 23) from the diaphragm rod (item 27) by turning counterclockwise. Inspect the diaphragm for cuts, punctures, abrasive wear or chemical attack. Replace the diaphragms if necessary. DO NOT USE A WRENCH ON THE DIAPHRAGM ROD. FLAWS ON THE SURFACE MAY DAMAGE BEARINGS AND SEALS.

Step #4: Assembling the diaphragm and diaphragm plates to the diaphragm rod.

Push the threaded stud of one outer diaphragm plate assembly through the center of one diaphragm and through one inner diaphragm plate. Install the diaphragm with the natural bulge facing away from the diaphragm rod and make sure the radius on the inner diaphragm plate is towards the diaphragm, as indicated on the diaphragm servicing illustration. Thread the assembly onto the diaphragm rod, leaving loose.

Step #5: Installing the diaphragm and rod assembly to the pump.

Make sure the bumper (item 6) is installed over the diaphragm rod. Insert rod into pump.

On the opposite side of the pump, pull the diaphragm rod out as far as possible. Make sure the second bumper is installed over the diaphragm rod.

Push the threaded stud of the other outer diaphragm plate assembly through the center of the other diaphragm and through the other inner diaphragm plate. Make sure the radius on the inner diaphragm plate is towards the diaphragm. Thread the assembly onto the diaphragm rod. Use a 7/8" wrench or socket to hold one outer diaphragm plate. Then, use a torque wrench to tighten the other outer diaphragm plate to the diaphragm rod to 500 in. lbs. (56.5 Newton meters).

Align one diaphragm with the intermediate and install the outer chamber to the pump using the 8 capscrews. Tighten the opposite diaphragm plate until the holes in the diaphragm align with the holes in the intermediate. Then, install the other outer chamber using the 8 capscrews.

Step #6: Reinstall the manifolds to the pump using the 16 capscrews.

The pump is now ready to be reinstalled, connected and returned to operation.

OVERLAY DIAPHRAGM SERVICING

The overlay diaphragm (item 15) is designed to fit over the exterior of the standard diaphragm (item 14).

Follow the same procedures described for the standard diaphragm for removal and installation, except tighten the outer diaphragm plate assembly, diaphragms and inner diaphragm plate to the diaphragm rod to 500 in. lbs. (56.5 Newton meters).

A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

ACTUATOR PLUNGER SERVICING

To service the actuator plunger first shut off the compressed natural gas supply, bleed the pressure from the pump, and disconnect the natural gas supply line from the pump.

Step #1: See PUMP ASSEMBLY DRAWING.

Using a 1/2" wrench or socket, remove the four capscrews (items 11). Remove the gas inlet cap (item 8) and gas inlet gasket (item 18). The pilot valve assembly (item 4) can now be removed.

Step #2: Inspect the actuator plungers.

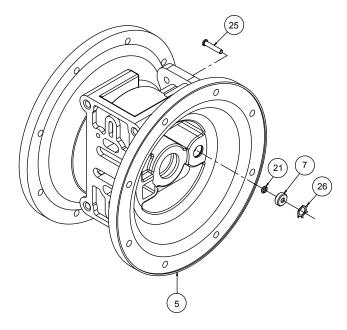
See ILLUSTRATION AT RIGHT.

The actuator plungers (items 25) can be reached through the pilot valve cavity in the intermediate assembly (item 5).

Remove the plungers (item 25) from the bushings (item 7) in each end of the cavity. Inspect the installed o-ring (items 21) for cuts and/or wear. Replace the o-rings if necessary. Apply a light coating of grease to each o-ring and reinstall the plungers in to the bushings. Push the plungers in as far as they will go.

To remove the bushings (item 7), first remove the retaining rings (item 26) by using a flat screwdriver.

NOTE: It is recommended that new retaining rings be installed.


Step #3: Re-install the pilot valve assembly into the intermediate assembly.

Be careful to align the ends of the stem between the plungers when inserting the stem of the pilot valve into the cavity of the intermediate.

Re-install the gasket (item 18), natural gas inlet cap (item 8) and capscrews (item 11).

Connect the natural gas supply to the pump. The pump is now ready for operation.

ACTUATOR PLUNGER SERVICING

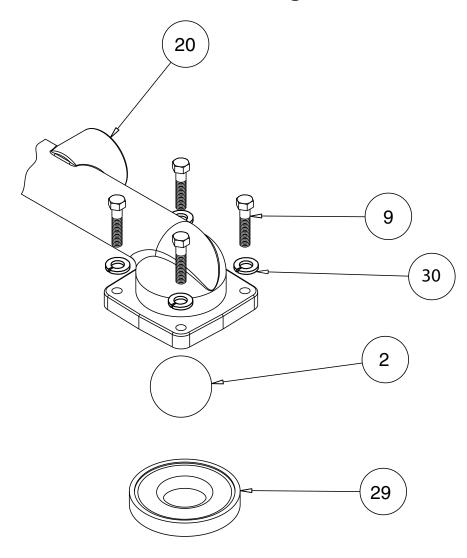
A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

CHECK VALVE SERVICING

Before servicing the check valve components, first shut off the suction line and then the discharge line to the pump. Next, shut off the compressed natural gas supply, bleed natural gas pressure from the pump, and disconnect the natural gas supply line from the pump. Drain any remaining fluid from the pump. The pump can now be removed for service.


To access the check valve components, remove the manifolds (item 19 not shown). Use a 9/16" wrench or socket to remove the fasteners. Once the manifold is removed, the check valve components can be seen.

Inspect the check balls (items 2) for wear, abrasion, or cuts on the spherical surface. The check valve seats (item 29) should be inspected for cuts, abrasive wear, or embedded material on the surfaces of both the external and internal chambers. The spherical surface of the check balls must seat flush to the surface of the check valve seats for the pump to operate to peak efficiency. Replace any worn or damaged parts as necessary.

Re-assemble the check valve components. The seat should fit into the counter bore of the outer chamber.

The pump can now be reassembled, reconnected and returned to operation.

Check Valve Drawing

PUMPING HAZARDOUS LIQUIDS

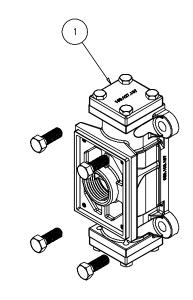
When a diaphragm fails, the pumped liquid or fumes enter the natural gas end of the pump. Fumes are exhausted into the surrounding environment. When pumping hazardous or toxic materials, the exhaust gas must be piped to an appropriate area for safe disposal. See illustration #1 at right.

This pump can be submerged if the pump materials of construction are compatible with the liquid being pumped. The natural gas exhaust must be piped above the liquid level. See illustration #2 at right. Piping used for the gas exhaust must not be smaller than 1" (2.54 cm) diameter. Reducing the pipe size will restrict natural gas flow and reduce pump performance. When the pumped product source is at a higher level than the pump (flooded suction condition), pipe the exhaust gas higher than the product source to prevent siphoning spills. See illustration #3 at right.

PIPING THE NATURAL GAS EXHAUST

The following steps are necessary to pipe the exhaust gas away from the pump.

The gas distribution valve assembly (item 1) has 1" NPT threads for piped exhaust.

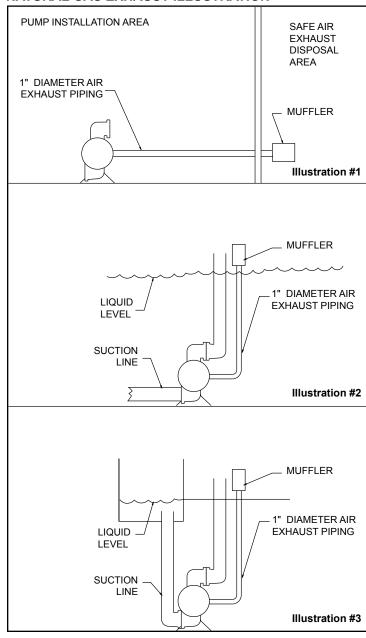

IMPORTANT INSTALLATION NOTE:

The manufacturer recommends installing a flexible conductive hose or connection between the pump and any rigid plumbing. This reduces stresses on the molded threads of the natural

gas exhaust port. Failure to do so may result in damage to the natural gas distribution valve body.

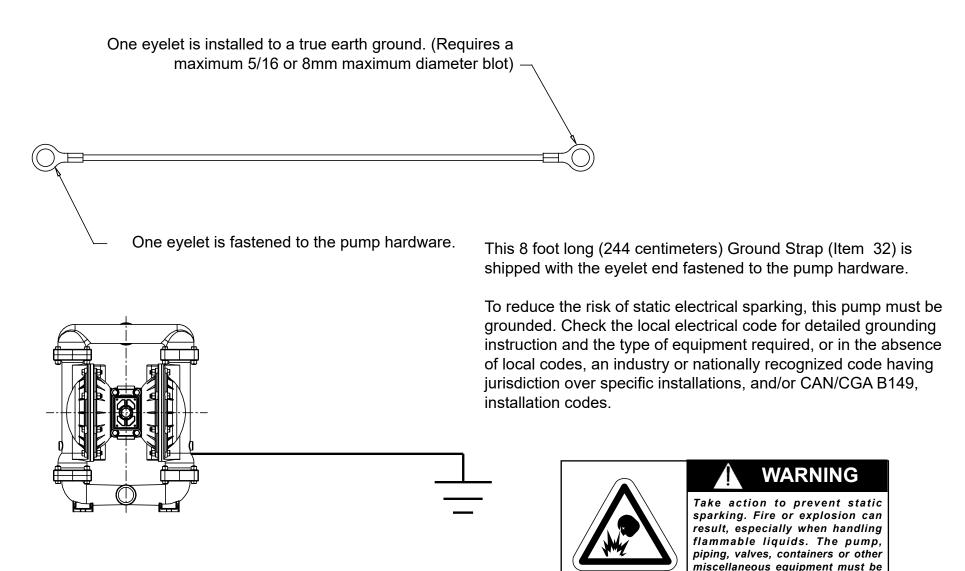
Any piping or hose connected to the pump's natural gas exhaust port must be conductive and physically supported. Failure to support these connections could also result in damage to the valve body.

If a high pressure gas spike is possible through the exhaust line, a pressure regulator is required in the exhaust piping.



A WARNING

Natural gas exhaust is to be vented to low pressure safe location using conductive Nitrile rubber hose or metal piping in accordance with


local fire and environmental codes, or an industry or nationally recognized code having jurisdiction over specific installations, and/or CAN/CGA B149. Installation Codes.

NATURAL GAS EXHAUST ILLUSTRATION

Grounding The Pump

To be fully groundable, the pumps must be ATEX Compliant. Refer to pump data sheet for ordering.

bruin g1fmdl1sm-rev1219 Model G1F Metallic Page 22

arounded.

BRUIN PUMPSDeclaration of Conformity

BRUIN INSTRUMENT CORPORATION • 9001 20th Street T6P1K8 • Edmonton, Alberta CANADA Certifies that Air-Operated Double Diaphragm Pump G and S Series Metallic Pumps comply with the European Community Directive 2006/42/EC on Machinery, according to Annex VIII. This product has used Harmonized Standard EN 809, Pumps and Pump Units for Liquids - Common Safety Requirements, to verify conformance.

Signature of authorized person

Darrell Hughes

Printed name of authorized person

Revision Level: E

October 20, 2005

Date of issue

V.P. Sales

January, 17 2011

Date of revision

BRUIN PUMPS

$\langle Ex \rangle$

EC / EU Declaration of Conformity

The objective of the declaration described is in conformity with the relevant Union harmonisation legislation: Directive 94/9/EC (until April 19, 2016) and Directive 2014/34/EU (from April 20, 2016).

BRUIN INSTRUMENT CORPORATION • 9001 20th Street T6P1K8 • Edmonton, Alberta CANADA

Air and Gas Operated Double Diaphragm Pumps

Technical File No.: 203104000-1410/MER

EC Type Examination Certificate No. Pumps: KEMA 09ATEX0071 X

DEKRA Certification B.V. (0344)

Meander 1051 6825 MJ Arnhem The Netherlands I M1 c II 1 G c T5 II 1 D c T100°C II 2 G c T5 II 2 G c T100°C **Applicable Standard:**

EN13463-1: 2001, EN13463-5: 2003

Harmonised Standards:

EN13463-1: 2009 EN13463-5: 2011 EN60079-25:2010

The harmonised standards have been compared to the applicable standards used for certification purposes and no changes in the state of the art technical knowledge apply to the listed equipment.

DATE/APPROVAL/TITLE:

26 May 2016 Revision:

aull dughes V.P. soles